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Useful tools

Fact 1

TFAE:

beer, wine, water, coffee, bread;

pivo, v́ıno, voda, káva, chléb/chleba.
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Basic notation and definitions

I will always denote an infinite index set, typically an uncountable cardinal
or partial ordering.

By a family F on I we mean an infinite family of finite
subsets of I (generally such that [I ]≤1 ⊆ F).
F is said to be:

hereditary if it is closed under subsets;

compact if it is a compact (equiv. closed) subset of 2I , when we
identify each element of F with its characteristic function;

pre-compact if every sequence in F has a subsequence which forms a
∆-system;

large if it contains arbitrarily large (in cardinality) finite subsets within
any infinite subset X of I .
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Example 2 (Cubes)

For each n ∈ ω, the family [κ]≤n is hereditary and compact, but not large.

Exercise 1

Let F be a family on I . Prove that:

(i) F is compact iff every sequence in F has a subsequence which forms
a ∆-system with root in F ;

(ii) F is pre-compact iff F⊆ = {s ⊆ I : ∃t ∈ F , s ⊆ t} is compact;

(iii) if F is hereditary, then it is compact iff it is pre-compact;

(iv) if F is compact, then F is scattered.

Example 3 (Schreier family)

The family S = {∅} ∪ {s ∈ [ω]<ω : |s| ≤ min s + 1} is hereditary, compact
and large.
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Indiscernibles

In model theory, a set of indiscernibles for a given structure M is a subset X with

a total order < such that, for every positive integer n, every two increasing

n-tuples x1 < x2 < · · · < xn and y1 < y2 < · · · < yn of elements of X have the

same properties in M.

Proposition 1

If F is a compact large family on I , then the relational structure
MF := (I , (F ∩ [I ]n)n) has no infinite sets of indiscernibles.

Proof.

Suppose X ⊆ I is infinite and (X , <) is a set of indiscernibles. Given
n ≥ 1, since F is large, there is s ∈ [X ]n ∩F . Now, given t ∈ [X ]n, writing
s = {x1 < · · · < xn} and t = {y1 < · · · < yn}, we get that t ∈ [X ]n ∩ F .
Hence, [X ]<ω ⊆ F , contradicting the fact that F is compact.
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Indiscernibles in Banach spaces: subsymmetric sequences

A sequence (xn)n in a Banach space X is subsymmetric if there is C ≥ 1
such that for all (λi )

l
i=1 and all increasing sequences (ki )

l
i=1 and (ni )

l
i=1

we have that

(
1

C
‖

l∑
i=1

λixni‖ ≤)

‖
l∑

i=1

λixki‖ ≤ C‖
l∑

i=1

λixni‖.

Example 4

The unit bases of c0 and `p, 1 ≤ p <∞ are (sub)symmetric.
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Indiscernibles in Banach spaces: subsymmetric sequences

Example 5 (Schreier space)

Given: x = (xn)n ∈ c00(ω), let ‖x‖S = sup{
∑

n∈s |xn| : s ∈ S}.
‖ · ‖S is a norm and the completion of (c00(ω), ‖ · ‖S) is a Banach space
such that (en)n is an unconditional basis with no subsymmetric basic
subsequences.

[ω]≤1 ⊆ S ⇒ ‖ · ‖∞ ≤ ‖ · ‖S ⇒ ‖ · ‖S is a norm;
hereditariness of F ⇒ projections on the first m-many coordinates are
bounded ⇒ (en)n is a Schauder basis, clearly unconditional;
compactness + Ptak’s Lemma + largeness of F ⇒ (en)n has no
subsymmetric subsequences.

Lemma 6 (Pták, 1963)

If F is a compact family on ω, then for every ε > 0, there is a finite F ⊆ ω
and positive (aα)α∈F such that

∑
α∈F aα = 1 and

∑
α∈s aα < ε if

s ∈ F ∩ ℘(F ).
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Lopez-Abad and Todorcevic result

Theorem 7 (Lopez-Abad, Todorcevic, 2013)

Let κ be an infinite cardinal. TFAE:

(a) κ is not ω-Erdös, i.e., if κ 6→ (ω)<ω2 ;

(b) there is a hereditary, compact and large family F on κ;

(c) there is a nontrivial normalized weakly-null basis (xα)α<κ in a Banach
space with no subsymmetric basic subsequence.



(a) implies (b)

Fact 8

If κ 6→ (ω)<ω2 and c : [κ]<ω → 2, then

Fc = {s ⊆ ω : s is monochromatic}

is a hereditary, compact and large family on κ.

Proof.

It is clearly hereditary and it is easy to check that it is compact. Largeness
is a consequence of the finite Ramsey theorem. The fact that κ 6→ (ω)<ω2

is needed only to guarantee that Fc consists of finite subsets of κ.
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(b) implies (c)

Fact 9

If F is a hereditary, compact and large family on κ and
x = (xα)α ∈ c00(κ), let

‖x‖F = sup{
∑
α∈s
|xα| : s ∈ F}.

‖ · ‖F is a norm and the completion of (c00(κ), ‖ · ‖F ) is a Banach space
such that (eα)α is an unconditional basis with no subsymmetric basic
subsequences.

Proof.

Analogous to the Schreier space.



(b) implies (c)

Fact 9

If F is a hereditary, compact and large family on κ and
x = (xα)α ∈ c00(κ), let

‖x‖F = sup{
∑
α∈s
|xα| : s ∈ F}.

‖ · ‖F is a norm and the completion of (c00(κ), ‖ · ‖F ) is a Banach space
such that (eα)α is an unconditional basis with no subsymmetric basic
subsequences.

Proof.

Analogous to the Schreier space.



(c) implies (a)

Exercise 2

κ→ (ω)<ω2 iff κ→ (ω)<ω2ω .
Hint: Given c : [κ]<ω → 2ω and θ : ω2 → ω bijection such that θ(i , j) ≥ i , let

d : [κ]<ω → 2 be such that d(s) is the j-th coordinate of the c-color of the

subset of s consisting of its first i -many elements, where θ(i , j) = |s| and show

that a d-monochromatic set is also c-monochromatic.

Fact 10 (Ketonen, 1974)

Given (xα)α<κ, for each s = {α1 < · · · < αn} ∈ [κ]<ω with |s| = n, define
fs on Rn by fs(a1, . . . , an) = ‖a1xα1 + · · ·+ anxαn‖ and define
c : [κ]<ω →

⋃
n∈ω{n} × Rn+1 by c(s) = (|s|, fs). If A is an infinite

monochromatic subset of κ, then (xα)α∈A is symmetric.
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Tsirelson space

Let us now turn to the “full” (in contrast with the “sequential”) version of
the problem, i.e., whether there is a Banach space with no subsymmetric
basic sequences.

The first such example was given by Tsirelson.

Example 11 (Tsirelson space)

Given x = (xn)n ∈ c00(ω), let ‖x‖T on c00(ω) be such that

‖x‖T = sup{‖x‖∞,
1

2

n∑
i=1

‖〈xi , χsi 〉‖T : si < si+1, {min si}1≤i≤n ∈ S}.

‖ · ‖T is a norm and the completion of (c00(ω), ‖ · ‖T ) is a (separable)
reflexive Banach space with no subsymmetric basic sequences.
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Example 11 (Tsirelson space)

Given x = (xn)n ∈ c00(ω), let ‖x‖T on c00(ω) be such that

‖x‖T = sup{‖x‖∞,
1

2

n∑
i=1

‖〈xi , χsi 〉‖T : si < si+1, {min si}1≤i≤n ∈ S}.

‖ · ‖T is a norm and the completion of (c00(ω), ‖ · ‖T ) is a (separable)
reflexive Banach space with no subsymmetric basic sequences.



Nonseparable Tsirelson-like spaces

However, the natural nonseparable version of the Tsirelson space,
replacing the Schreier family by a hereditary compact and large family on
an uncountable cardinal κ, yields a space with copies of `1, hence with
subsymmetric basic sequences (Lopez-Abad, Todorcevic, 2013).

One of
the reasons for that is that the Schreier family is spreading, that is, if
{k1, . . . , kn} ∈ S and ki ≤ li , then {l1, . . . , ln} ∈ S, while we have the
following in the uncountable setting:

Fact 12

If F is a large and spreading family on an uncountable index set, then F is
not compact.

To overcome this obstacle, we switch from a single large family to
sequences of families obtained by making some kind of products by
families on ω, such as the Schreier family.
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Nonseparable Tsirelson-like spaces

Given a family F on a cardinal κ and a family H on ω, we say that a family
G on κ is a multiplication of F by H if every infinite sequence (sn)n in F
has an infinite subsequence (tn)n such that, for every x ∈ H,

⋃
n∈x tn ∈ G.

We say that a sequence of families (Fn)n on κ is a CL-sequence
(consecutively large sequence) of families on κ if each family is hereditary
and compact and Fn+1 is a multiplication of Fn by S.

Theorem 13 (B., Lopez-Abad, Todorcevic)

For every infinite cardinal κ smaller than the first Mahlo cardinal, there is
a CL-sequence of families on κ.

Recall that a cardinal κ is Mahlo if it is strongly inaccessible and
{λ < κ : λ is strongly inaccessible} is stationary.
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Nonseparable Tsirelson-like spaces

Theorem 14 (B., Lopez-Abad, Todorcevic & Argyros, Motakis)

If (Fn)n is a CL-sequence, then there is a Banach space X of density κ
with an unconditional (long) basis and with no subsymmetric sequences.

Sketch.

Given x ∈ c00(κ), let

‖x‖ = sup{‖x‖∞, ‖
∞∑
n=0

‖x‖Fn

2n+1
‖T}.

This is a norm such that the closure with respect to it is a Banach space
of density κ with an unconditional basis and with no subsymmetric
sequences.
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A CL-sequence on ω

Example 15

Given hereditary and compact families F and F ′ on ω, let

F ⊕ F ′ = {s ∪ t : s < t, s ∈ F ′, t ∈ F},

F ⊗ F ′ = {
⋃
k<n

sk : n ∈ ω, sk < sk+1, sk ∈ F , {min sk : k < n} ∈ F ′},

and notice that G = (F ⊗ S)⊕F is a compact and hereditary family on ω
and a multiplication of F by S.

Define inductively:

F0 = S;

Fn+1 = (Sn ⊗ S)⊕ Sn.

(Fn)n is a CL-sequence of families on ω.
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