Generalizing Schreier families to large index sets

Christina Brech
Joint with J. Lopez-Abad and S. Todorcevic

Universidade de São Paulo

Winterschool 2017

Outline

(1) Introduction

- Basic notation and definitions
- Motivation: indiscernibles in Banach spaces
(2) First main result
- Multiplication of families
- Families on trees
- Stepping up
(3) Second main result
- Cantor-Bendixson indices and homogeneity
- Topological multiplication and bases

Main References

S. A. Argyros and S. Todorcevic, Ramsey methods in analysis, Advanced Courses in Mathematics. CRM Barcelona, Birkhäuser Verlag, Basel, 2005.
R. Brech, J. Lopez-Abad, and S. Todorcevic, Homogeneous families on trees and subsymmetric basic sequences, preprint.
R. Lopez-Abad and S. Todorcevic, Positional graphs and conditional structure of weakly null sequences, Adv. Math. 242 (2013), 163-186.

囯 S. Todorcevic, Walks on ordinals and their characteristics, Progress in Mathematics, vol. 263, Birkhäuser Verlag, Basel, 2007.

Useful tools

Useful tools

Fact 1

TFAE:

- beer, wine, water, coffee, bread;
- pivo, víno, voda, káva, chléb/chleba.

Basic notation and definitions

I will always denote an infinite index set, typically an uncountable cardinal or partial ordering.

Basic notation and definitions

I will always denote an infinite index set, typically an uncountable cardinal or partial ordering. By a family \mathcal{F} on I we mean an infinite family of finite subsets of I (generally such that $[I]^{\leq 1} \subseteq \mathcal{F}$).

Basic notation and definitions

I will always denote an infinite index set, typically an uncountable cardinal or partial ordering. By a family \mathcal{F} on I we mean an infinite family of finite subsets of I (generally such that $[I]^{\leq 1} \subseteq \mathcal{F}$).
\mathcal{F} is said to be:

- hereditary if it is closed under subsets;

Basic notation and definitions

I will always denote an infinite index set, typically an uncountable cardinal or partial ordering. By a family \mathcal{F} on I we mean an infinite family of finite subsets of I (generally such that $[I]^{\leq 1} \subseteq \mathcal{F}$).
\mathcal{F} is said to be:

- hereditary if it is closed under subsets;
- compact if it is a compact (equiv. closed) subset of 2^{\prime}, when we identify each element of \mathcal{F} with its characteristic function;

Basic notation and definitions

I will always denote an infinite index set, typically an uncountable cardinal or partial ordering. By a family \mathcal{F} on I we mean an infinite family of finite subsets of I (generally such that $[I]^{\leq 1} \subseteq \mathcal{F}$).
\mathcal{F} is said to be:

- hereditary if it is closed under subsets;
- compact if it is a compact (equiv. closed) subset of 2^{\prime}, when we identify each element of \mathcal{F} with its characteristic function;
- pre-compact if every sequence in \mathcal{F} has a subsequence which forms a Δ-system;

Basic notation and definitions

I will always denote an infinite index set, typically an uncountable cardinal or partial ordering. By a family \mathcal{F} on I we mean an infinite family of finite subsets of I (generally such that $[I]^{\leq 1} \subseteq \mathcal{F}$).
\mathcal{F} is said to be:

- hereditary if it is closed under subsets;
- compact if it is a compact (equiv. closed) subset of 2^{\prime}, when we identify each element of \mathcal{F} with its characteristic function;
- pre-compact if every sequence in \mathcal{F} has a subsequence which forms a Δ-system;
- large if it contains arbitrarily large (in cardinality) finite subsets within any infinite subset X of I.

Example 2 (Cubes)
For each $n \in \omega$, the family $[\kappa]^{\leq n}$ is hereditary and compact, but not large.

Example 2 (Cubes)

For each $n \in \omega$, the family $[\kappa]^{\leq n}$ is hereditary and compact, but not large.

Exercise 1

Let \mathcal{F} be a family on I. Prove that:

Example 2 (Cubes)

For each $n \in \omega$, the family $[\kappa]^{\leq n}$ is hereditary and compact, but not large.

Exercise 1

Let \mathcal{F} be a family on I. Prove that:
(i) \mathcal{F} is compact iff every sequence in \mathcal{F} has a subsequence which forms a Δ-system with root in \mathcal{F};

Example 2 (Cubes)

For each $n \in \omega$, the family $[\kappa]^{\leq n}$ is hereditary and compact, but not large.

Exercise 1

Let \mathcal{F} be a family on I. Prove that:
(i) \mathcal{F} is compact iff every sequence in \mathcal{F} has a subsequence which forms a Δ-system with root in \mathcal{F};
(ii) \mathcal{F} is pre-compact iff $\overline{\mathcal{F}}^{\subseteq}=\{s \subseteq I: \exists t \in \mathcal{F}, s \subseteq t\}$ is compact;

Example 2 (Cubes)

For each $n \in \omega$, the family $[\kappa]^{\leq n}$ is hereditary and compact, but not large.

Exercise 1

Let \mathcal{F} be a family on I. Prove that:
(i) \mathcal{F} is compact iff every sequence in \mathcal{F} has a subsequence which forms a Δ-system with root in \mathcal{F};
(ii) \mathcal{F} is pre-compact iff $\overline{\mathcal{F}}^{\subseteq}=\{s \subseteq I: \exists t \in \mathcal{F}, s \subseteq t\}$ is compact;
(iii) if \mathcal{F} is hereditary, then it is compact iff it is pre-compact;

Example 2 (Cubes)

For each $n \in \omega$, the family $[\kappa]^{\leq n}$ is hereditary and compact, but not large.

Exercise 1

Let \mathcal{F} be a family on I. Prove that:
(i) \mathcal{F} is compact iff every sequence in \mathcal{F} has a subsequence which forms a Δ-system with root in \mathcal{F};
(ii) \mathcal{F} is pre-compact iff $\overline{\mathcal{F}}^{\subseteq}=\{s \subseteq I: \exists t \in \mathcal{F}, s \subseteq t\}$ is compact;
(iii) if \mathcal{F} is hereditary, then it is compact iff it is pre-compact;
(iv) if \mathcal{F} is compact, then \mathcal{F} is scattered.

Example 2 (Cubes)

For each $n \in \omega$, the family $[\kappa]^{\leq n}$ is hereditary and compact, but not large.

Exercise 1

Let \mathcal{F} be a family on I. Prove that:
(i) \mathcal{F} is compact iff every sequence in \mathcal{F} has a subsequence which forms a Δ-system with root in \mathcal{F};
(ii) \mathcal{F} is pre-compact iff $\overline{\mathcal{F}}^{\subseteq}=\{s \subseteq 1: \exists t \in \mathcal{F}, s \subseteq t\}$ is compact;
(iii) if \mathcal{F} is hereditary, then it is compact iff it is pre-compact;
(iv) if \mathcal{F} is compact, then \mathcal{F} is scattered.

Example 3 (Schreier family)

The family $\mathcal{S}=\{\emptyset\} \cup\left\{s \in[\omega]^{<\omega}:|s| \leq \min s+1\right\}$ is hereditary, compact and large.

Indiscernibles

In model theory, a set of indiscernibles for a given structure \mathcal{M} is a subset X with a total order $<$ such that, for every positive integer n, every two increasing n-tuples $x_{1}<x_{2}<\cdots<x_{n}$ and $y_{1}<y_{2}<\cdots<y_{n}$ of elements of X have the same properties in \mathcal{M}.

Indiscernibles

In model theory, a set of indiscernibles for a given structure \mathcal{M} is a subset X with a total order $<$ such that, for every positive integer n, every two increasing n-tuples $x_{1}<x_{2}<\cdots<x_{n}$ and $y_{1}<y_{2}<\cdots<y_{n}$ of elements of X have the same properties in \mathcal{M}.

Proposition 1

If \mathcal{F} is a compact large family on I, then the relational structure $\mathcal{M}_{\mathcal{F}}:=\left(I,\left(\mathcal{F} \cap[I]^{n}\right)_{n}\right)$ has no infinite sets of indiscernibles.

Indiscernibles

In model theory, a set of indiscernibles for a given structure \mathcal{M} is a subset X with a total order $<$ such that, for every positive integer n, every two increasing n-tuples $x_{1}<x_{2}<\cdots<x_{n}$ and $y_{1}<y_{2}<\cdots<y_{n}$ of elements of X have the same properties in \mathcal{M}.

Proposition 1
If \mathcal{F} is a compact large family on I, then the relational structure $\mathcal{M}_{\mathcal{F}}:=\left(I,\left(\mathcal{F} \cap[I]^{n}\right)_{n}\right)$ has no infinite sets of indiscernibles.

Proof.

Suppose $X \subseteq I$ is infinite and $(X,<)$ is a set of indiscernibles.

Indiscernibles

In model theory, a set of indiscernibles for a given structure \mathcal{M} is a subset X with a total order $<$ such that, for every positive integer n, every two increasing n-tuples $x_{1}<x_{2}<\cdots<x_{n}$ and $y_{1}<y_{2}<\cdots<y_{n}$ of elements of X have the same properties in \mathcal{M}.

Proposition 1
If \mathcal{F} is a compact large family on I, then the relational structure $\mathcal{M}_{\mathcal{F}}:=\left(I,\left(\mathcal{F} \cap[I]^{n}\right)_{n}\right)$ has no infinite sets of indiscernibles.

Proof.

Suppose $X \subseteq I$ is infinite and $(X,<)$ is a set of indiscernibles. Given $n \geq 1$, since \mathcal{F} is large, there is $s \in[X]^{n} \cap \mathcal{F}$.

Indiscernibles

In model theory, a set of indiscernibles for a given structure \mathcal{M} is a subset X with a total order $<$ such that, for every positive integer n, every two increasing n-tuples $x_{1}<x_{2}<\cdots<x_{n}$ and $y_{1}<y_{2}<\cdots<y_{n}$ of elements of X have the same properties in \mathcal{M}.

Proposition 1
If \mathcal{F} is a compact large family on I, then the relational structure $\mathcal{M}_{\mathcal{F}}:=\left(I,\left(\mathcal{F} \cap[I]^{n}\right)_{n}\right)$ has no infinite sets of indiscernibles.

Proof.

Suppose $X \subseteq I$ is infinite and $(X,<)$ is a set of indiscernibles. Given $n \geq 1$, since \mathcal{F} is large, there is $s \in[X]^{n} \cap \mathcal{F}$. Now, given $t \in[X]^{n}$, writing $s=\left\{x_{1}<\cdots<x_{n}\right\}$ and $t=\left\{y_{1}<\cdots<y_{n}\right\}$, we get that $t \in[X]^{n} \cap \mathcal{F}$.

Indiscernibles

In model theory, a set of indiscernibles for a given structure \mathcal{M} is a subset X with a total order $<$ such that, for every positive integer n, every two increasing n-tuples $x_{1}<x_{2}<\cdots<x_{n}$ and $y_{1}<y_{2}<\cdots<y_{n}$ of elements of X have the same properties in \mathcal{M}.

Proposition 1
If \mathcal{F} is a compact large family on I, then the relational structure $\mathcal{M}_{\mathcal{F}}:=\left(I,\left(\mathcal{F} \cap[I]^{n}\right)_{n}\right)$ has no infinite sets of indiscernibles.

Proof.

Suppose $X \subseteq I$ is infinite and $(X,<)$ is a set of indiscernibles. Given $n \geq 1$, since \mathcal{F} is large, there is $s \in[X]^{n} \cap \mathcal{F}$. Now, given $t \in[X]^{n}$, writing $s=\left\{x_{1}<\cdots<x_{n}\right\}$ and $t=\left\{y_{1}<\cdots<y_{n}\right\}$, we get that $t \in[X]^{n} \cap \mathcal{F}$. Hence, $[X]^{<\omega} \subseteq \mathcal{F}$, contradicting the fact that \mathcal{F} is compact.

Indiscernibles in Banach spaces: subsymmetric sequences

A sequence $\left(x_{n}\right)_{n}$ in a Banach space X is subsymmetric if there is $C \geq 1$ such that for all $\left(\lambda_{i}\right)_{i=1}^{l}$ and all increasing sequences $\left(k_{i}\right)_{i=1}^{l}$ and $\left(n_{i}\right)_{i=1}^{l}$ we have that

$$
\left\|\sum_{i=1}^{\prime} \lambda_{i} x_{k_{i}}\right\| \leq C\left\|\sum_{i=1}^{l} \lambda_{i} x_{n_{i}}\right\| .
$$

Indiscernibles in Banach spaces: subsymmetric sequences

A sequence $\left(x_{n}\right)_{n}$ in a Banach space X is subsymmetric if there is $C \geq 1$ such that for all $\left(\lambda_{i}\right)_{i=1}^{l}$ and all increasing sequences $\left(k_{i}\right)_{i=1}^{l}$ and $\left(n_{i}\right)_{i=1}^{l}$ we have that

$$
\left(\frac{1}{C}\left\|\sum_{i=1}^{l} \lambda_{i} x_{n_{i}}\right\| \leq\right)\left\|\sum_{i=1}^{l} \lambda_{i} x_{k_{i}}\right\| \leq C\left\|\sum_{i=1}^{l} \lambda_{i} x_{n_{i}}\right\| .
$$

Indiscernibles in Banach spaces: subsymmetric sequences

A sequence $\left(x_{n}\right)_{n}$ in a Banach space X is subsymmetric if there is $C \geq 1$ such that for all $\left(\lambda_{i}\right)_{i=1}^{l}$ and all increasing sequences $\left(k_{i}\right)_{i=1}^{l}$ and $\left(n_{i}\right)_{i=1}^{l}$ we have that

$$
\left(\frac{1}{C}\left\|\sum_{i=1}^{l} \lambda_{i} x_{n_{i}}\right\| \leq\right)\left\|\sum_{i=1}^{l} \lambda_{i} x_{k_{i}}\right\| \leq C\left\|\sum_{i=1}^{l} \lambda_{i} x_{n_{i}}\right\| .
$$

Example 4

The unit bases of c_{0} and $\ell_{p}, 1 \leq p<\infty$ are (sub)symmetric.

Indiscernibles in Banach spaces: subsymmetric sequences

Example 5 (Schreier space)

Given: $x=\left(x_{n}\right)_{n} \in c_{00}(\omega)$, let $\|x\|_{\mathcal{S}}=\sup \left\{\sum_{n \in s}\left|x_{n}\right|: s \in \mathcal{S}\right\}$. $\|\cdot\|_{\mathcal{S}}$ is a norm and the completion of $\left(c_{00}(\omega),\|\cdot\|_{\mathcal{S}}\right)$ is a Banach space such that $\left(e_{n}\right)_{n}$ is an unconditional basis with no subsymmetric basic subsequences.

Indiscernibles in Banach spaces: subsymmetric sequences

Example 5 (Schreier space)

Given: $x=\left(x_{n}\right)_{n} \in c_{00}(\omega)$, let $\|x\|_{\mathcal{S}}=\sup \left\{\sum_{n \in s}\left|x_{n}\right|: s \in \mathcal{S}\right\}$. $\|\cdot\|_{\mathcal{S}}$ is a norm and the completion of $\left(c_{00}(\omega),\|\cdot\|_{\mathcal{S}}\right)$ is a Banach space such that $\left(e_{n}\right)_{n}$ is an unconditional basis with no subsymmetric basic subsequences.

- $[\omega]^{\leq 1} \subseteq \mathcal{S} \Rightarrow\|\cdot\|_{\infty} \leq\|\cdot\|_{\mathcal{S}} \Rightarrow\|\cdot\|_{\mathcal{S}}$ is a norm;

Indiscernibles in Banach spaces: subsymmetric sequences

Example 5 (Schreier space)

Given: $x=\left(x_{n}\right)_{n} \in c_{00}(\omega)$, let $\|x\|_{\mathcal{S}}=\sup \left\{\sum_{n \in s}\left|x_{n}\right|: s \in \mathcal{S}\right\}$. $\|\cdot\|_{\mathcal{S}}$ is a norm and the completion of $\left(c_{00}(\omega),\|\cdot\|_{\mathcal{S}}\right)$ is a Banach space such that $\left(e_{n}\right)_{n}$ is an unconditional basis with no subsymmetric basic subsequences.

- $[\omega]^{\leq 1} \subseteq \mathcal{S} \Rightarrow\|\cdot\|_{\infty} \leq\|\cdot\|_{\mathcal{S}} \Rightarrow\|\cdot\|_{\mathcal{S}}$ is a norm;
- hereditariness of $\mathcal{F} \Rightarrow$ projections on the first m-many coordinates are bounded $\Rightarrow\left(e_{n}\right)_{n}$ is a Schauder basis, clearly unconditional;

Indiscernibles in Banach spaces: subsymmetric sequences

Example 5 (Schreier space)

Given: $x=\left(x_{n}\right)_{n} \in c_{00}(\omega)$, let $\|x\|_{\mathcal{S}}=\sup \left\{\sum_{n \in s}\left|x_{n}\right|: s \in \mathcal{S}\right\}$. $\|\cdot\|_{\mathcal{S}}$ is a norm and the completion of $\left(c_{00}(\omega),\|\cdot\|_{\mathcal{S}}\right)$ is a Banach space such that $\left(e_{n}\right)_{n}$ is an unconditional basis with no subsymmetric basic subsequences.

- $[\omega]^{\leq 1} \subseteq \mathcal{S} \Rightarrow\|\cdot\|_{\infty} \leq\|\cdot\|_{\mathcal{S}} \Rightarrow\|\cdot\|_{\mathcal{S}}$ is a norm;
- hereditariness of $\mathcal{F} \Rightarrow$ projections on the first m-many coordinates are bounded $\Rightarrow\left(e_{n}\right)_{n}$ is a Schauder basis, clearly unconditional;
- compactness + Ptak's Lemma + largeness of $\mathcal{F} \Rightarrow\left(e_{n}\right)_{n}$ has no subsymmetric subsequences.

Indiscernibles in Banach spaces: subsymmetric sequences

Example 5 (Schreier space)
Given: $x=\left(x_{n}\right)_{n} \in c_{00}(\omega)$, let $\|x\|_{\mathcal{S}}=\sup \left\{\sum_{n \in s}\left|x_{n}\right|: s \in \mathcal{S}\right\}$.
$\|\cdot\|_{\mathcal{S}}$ is a norm and the completion of $\left(c_{00}(\omega),\|\cdot\|_{\mathcal{S}}\right)$ is a Banach space such that $\left(e_{n}\right)_{n}$ is an unconditional basis with no subsymmetric basic subsequences.

- $[\omega]^{\leq 1} \subseteq \mathcal{S} \Rightarrow\|\cdot\|_{\infty} \leq\|\cdot\|_{\mathcal{S}} \Rightarrow\|\cdot\|_{\mathcal{S}}$ is a norm;
- hereditariness of $\mathcal{F} \Rightarrow$ projections on the first m-many coordinates are bounded $\Rightarrow\left(e_{n}\right)_{n}$ is a Schauder basis, clearly unconditional;
- compactness + Ptak's Lemma + largeness of $\mathcal{F} \Rightarrow\left(e_{n}\right)_{n}$ has no subsymmetric subsequences.

Lemma 6 (Pták, 1963)
If \mathcal{F} is a compact family on ω, then for every $\varepsilon>0$, there is a finite $F \subseteq \omega$ and positive $\left(a_{\alpha}\right)_{\alpha \in F}$ such that $\sum_{\alpha \in F} a_{\alpha}=1$ and $\sum_{\alpha \in s} a_{\alpha}<\varepsilon$ if $s \in \mathcal{F} \cap \wp(F)$.

Lopez-Abad and Todorcevic result

Theorem 7 (Lopez-Abad, Todorcevic, 2013)
Let κ be an infinite cardinal. TFAE:
(a) κ is not ω-Erdös, i.e., if $\kappa \nrightarrow(\omega)_{2}^{<\omega}$;
(b) there is a hereditary, compact and large family \mathcal{F} on κ;
(c) there is a nontrivial normalized weakly-null basis $\left(x_{\alpha}\right)_{\alpha<\kappa}$ in a Banach space with no subsymmetric basic subsequence.

(a) implies (b)

Fact 8

If $\kappa \nrightarrow(\omega)_{2}^{<\omega}$ and $c:[\kappa]^{<\omega} \rightarrow 2$, then

$$
\mathcal{F}_{c}=\{s \subseteq \omega: s \text { is monochromatic }\}
$$

is a hereditary, compact and large family on κ.

(a) implies (b)

Fact 8

If $\kappa \nrightarrow(\omega)_{2}^{<\omega}$ and $c:[\kappa]^{<\omega} \rightarrow 2$, then

$$
\mathcal{F}_{c}=\{s \subseteq \omega: s \text { is monochromatic }\}
$$

is a hereditary, compact and large family on κ.

Proof.

It is clearly hereditary and it is easy to check that it is compact. Largeness is a consequence of the finite Ramsey theorem. The fact that $\kappa \nrightarrow(\omega)_{2}^{<\omega}$ is needed only to guarantee that \mathcal{F}_{c} consists of finite subsets of κ.

(b) implies (c)

Fact 9

If \mathcal{F} is a hereditary, compact and large family on κ and
$x=\left(x_{\alpha}\right)_{\alpha} \in c_{00}(\kappa)$, let

$$
\|x\|_{\mathcal{F}}=\sup \left\{\sum_{\alpha \in s}\left|x_{\alpha}\right|: s \in \mathcal{F}\right\} .
$$

$\|\cdot\|_{\mathcal{F}}$ is a norm and the completion of $\left(c_{00}(\kappa),\|\cdot\|_{\mathcal{F}}\right)$ is a Banach space such that $\left(e_{\alpha}\right)_{\alpha}$ is an unconditional basis with no subsymmetric basic subsequences.

(b) implies (c)

Fact 9

If \mathcal{F} is a hereditary, compact and large family on κ and
$x=\left(x_{\alpha}\right)_{\alpha} \in c_{00}(\kappa)$, let

$$
\|x\|_{\mathcal{F}}=\sup \left\{\sum_{\alpha \in s}\left|x_{\alpha}\right|: s \in \mathcal{F}\right\} .
$$

$\|\cdot\|_{\mathcal{F}}$ is a norm and the completion of $\left(c_{00}(\kappa),\|\cdot\|_{\mathcal{F}}\right)$ is a Banach space such that $\left(e_{\alpha}\right)_{\alpha}$ is an unconditional basis with no subsymmetric basic subsequences.

Proof.

Analogous to the Schreier space.

(c) implies (a)

Exercise 2

$\kappa \rightarrow(\omega)_{2}^{<\omega}$ iff $\kappa \rightarrow(\omega)_{2 \omega}^{<\omega}$.
Hint: Given $c:[\kappa]^{<\omega} \rightarrow 2^{\omega}$ and $\theta: \omega^{2} \rightarrow \omega$ bijection such that $\theta(i, j) \geq i$, let $d:[\kappa]^{<\omega} \rightarrow 2$ be such that $d(s)$ is the j-th coordinate of the c-color of the subset of s consisting of its first i-many elements, where $\theta(i, j)=|s|$ and show that a d-monochromatic set is also c-monochromatic.

(c) implies (a)

Exercise 2

$\kappa \rightarrow(\omega)_{2}^{<\omega}$ iff $\kappa \rightarrow(\omega)_{2}^{<\omega}$.
Hint: Given $c:[\kappa]^{<\omega} \rightarrow 2^{\omega}$ and $\theta: \omega^{2} \rightarrow \omega$ bijection such that $\theta(i, j) \geq i$, let $d:[\kappa]^{<\omega} \rightarrow 2$ be such that $d(s)$ is the j-th coordinate of the c-color of the subset of s consisting of its first i-many elements, where $\theta(i, j)=|s|$ and show that a d-monochromatic set is also c-monochromatic.

Fact 10 (Ketonen, 1974)
Given $\left(x_{\alpha}\right)_{\alpha<\kappa}$, for each $s=\left\{\alpha_{1}<\cdots<\alpha_{n}\right\} \in[\kappa]^{<\omega}$ with $|s|=n$, define f_{s} on \mathbb{R}^{n} by $f_{s}\left(a_{1}, \ldots, a_{n}\right)=\left\|a_{1} x_{\alpha_{1}}+\cdots+a_{n} x_{\alpha_{n}}\right\|$ and define $c:[k]^{<\omega} \rightarrow \bigcup_{n \in \omega}\{n\} \times \mathbb{R}^{n+1}$ by $c(s)=\left(|s|, f_{s}\right)$. If A is an infinite monochromatic subset of κ, then $\left(x_{\alpha}\right)_{\alpha \in A}$ is symmetric.

Tsirelson space

Let us now turn to the "full" (in contrast with the "sequential") version of the problem, i.e., whether there is a Banach space with no subsymmetric basic sequences.

Tsirelson space

Let us now turn to the "full" (in contrast with the "sequential") version of the problem, i.e., whether there is a Banach space with no subsymmetric basic sequences. The first such example was given by Tsirelson.

Example 11 (Tsirelson space)
Given $x=\left(x_{n}\right)_{n} \in c_{00}(\omega)$, let $\|x\|_{T}$ on $c_{00}(\omega)$ be such that

$$
\|x\|_{T}=\sup \left\{\|x\|_{\infty}, \frac{1}{2} \sum_{i=1}^{n}\left\|\left\langle x_{i}, \chi_{s_{i}}\right\rangle\right\|_{T}: s_{i}<s_{i+1}, \quad\left\{\min s_{i}\right\}_{1 \leq i \leq n} \in \mathcal{S}\right\}
$$

$\|\cdot\|_{T}$ is a norm and the completion of $\left(c_{00}(\omega),\|\cdot\|_{T}\right)$ is a (separable) reflexive Banach space with no subsymmetric basic sequences.

Nonseparable Tsirelson-like spaces

However, the natural nonseparable version of the Tsirelson space, replacing the Schreier family by a hereditary compact and large family on an uncountable cardinal κ, yields a space with copies of ℓ_{1}, hence with subsymmetric basic sequences (Lopez-Abad, Todorcevic, 2013).

Nonseparable Tsirelson-like spaces

However, the natural nonseparable version of the Tsirelson space, replacing the Schreier family by a hereditary compact and large family on an uncountable cardinal κ, yields a space with copies of ℓ_{1}, hence with subsymmetric basic sequences (Lopez-Abad, Todorcevic, 2013). One of the reasons for that is that the Schreier family is spreading, that is, if $\left\{k_{1}, \ldots, k_{n}\right\} \in \mathcal{S}$ and $k_{i} \leq I_{i}$, then $\left\{l_{1}, \ldots, I_{n}\right\} \in \mathcal{S}$, while we have the following in the uncountable setting:

Nonseparable Tsirelson-like spaces

However, the natural nonseparable version of the Tsirelson space, replacing the Schreier family by a hereditary compact and large family on an uncountable cardinal κ, yields a space with copies of ℓ_{1}, hence with subsymmetric basic sequences (Lopez-Abad, Todorcevic, 2013). One of the reasons for that is that the Schreier family is spreading, that is, if $\left\{k_{1}, \ldots, k_{n}\right\} \in \mathcal{S}$ and $k_{i} \leq I_{i}$, then $\left\{l_{1}, \ldots, I_{n}\right\} \in \mathcal{S}$, while we have the following in the uncountable setting:

Fact 12

If \mathcal{F} is a large and spreading family on an uncountable index set, then \mathcal{F} is not compact.

Nonseparable Tsirelson-like spaces

However, the natural nonseparable version of the Tsirelson space, replacing the Schreier family by a hereditary compact and large family on an uncountable cardinal κ, yields a space with copies of ℓ_{1}, hence with subsymmetric basic sequences (Lopez-Abad, Todorcevic, 2013). One of the reasons for that is that the Schreier family is spreading, that is, if $\left\{k_{1}, \ldots, k_{n}\right\} \in \mathcal{S}$ and $k_{i} \leq l_{i}$, then $\left\{l_{1}, \ldots, I_{n}\right\} \in \mathcal{S}$, while we have the following in the uncountable setting:

Fact 12

If \mathcal{F} is a large and spreading family on an uncountable index set, then \mathcal{F} is not compact.

To overcome this obstacle, we switch from a single large family to sequences of families obtained by making some kind of products by families on ω, such as the Schreier family.

Nonseparable Tsirelson-like spaces

Given a family \mathcal{F} on a cardinal κ and a family \mathcal{H} on ω, we say that a family \mathcal{G} on κ is a multiplication of \mathcal{F} by \mathcal{H} if every infinite sequence $\left(s_{n}\right)_{n}$ in \mathcal{F} has an infinite subsequence $\left(t_{n}\right)_{n}$ such that, for every $x \in \mathcal{H}, \bigcup_{n \in x} t_{n} \in \mathcal{G}$.

Nonseparable Tsirelson-like spaces

Given a family \mathcal{F} on a cardinal κ and a family \mathcal{H} on ω, we say that a family \mathcal{G} on κ is a multiplication of \mathcal{F} by \mathcal{H} if every infinite sequence $\left(s_{n}\right)_{n}$ in \mathcal{F} has an infinite subsequence $\left(t_{n}\right)_{n}$ such that, for every $x \in \mathcal{H}, \bigcup_{n \in x} t_{n} \in \mathcal{G}$.

We say that a sequence of families $\left(\mathcal{F}_{n}\right)_{n}$ on κ is a CL-sequence (consecutively large sequence) of families on κ if each family is hereditary and compact and \mathcal{F}_{n+1} is a multiplication of \mathcal{F}_{n} by \mathcal{S}.

Nonseparable Tsirelson-like spaces

Given a family \mathcal{F} on a cardinal κ and a family \mathcal{H} on ω, we say that a family \mathcal{G} on κ is a multiplication of \mathcal{F} by \mathcal{H} if every infinite sequence $\left(s_{n}\right)_{n}$ in \mathcal{F} has an infinite subsequence $\left(t_{n}\right)_{n}$ such that, for every $x \in \mathcal{H}, \bigcup_{n \in x} t_{n} \in \mathcal{G}$.

We say that a sequence of families $\left(\mathcal{F}_{n}\right)_{n}$ on κ is a CL-sequence (consecutively large sequence) of families on κ if each family is hereditary and compact and \mathcal{F}_{n+1} is a multiplication of \mathcal{F}_{n} by \mathcal{S}.

Theorem 13 (B., Lopez-Abad, Todorcevic)
For every infinite cardinal κ smaller than the first Mahlo cardinal, there is a CL-sequence of families on κ.

Nonseparable Tsirelson-like spaces

Given a family \mathcal{F} on a cardinal κ and a family \mathcal{H} on ω, we say that a family \mathcal{G} on κ is a multiplication of \mathcal{F} by \mathcal{H} if every infinite sequence $\left(s_{n}\right)_{n}$ in \mathcal{F} has an infinite subsequence $\left(t_{n}\right)_{n}$ such that, for every $x \in \mathcal{H}, \bigcup_{n \in x} t_{n} \in \mathcal{G}$.

We say that a sequence of families $\left(\mathcal{F}_{n}\right)_{n}$ on κ is a CL-sequence (consecutively large sequence) of families on κ if each family is hereditary and compact and \mathcal{F}_{n+1} is a multiplication of \mathcal{F}_{n} by \mathcal{S}.

Theorem 13 (B., Lopez-Abad, Todorcevic)
For every infinite cardinal κ smaller than the first Mahlo cardinal, there is a CL-sequence of families on κ.

Recall that a cardinal κ is Mahlo if it is strongly inaccessible and $\{\lambda<\kappa: \lambda$ is strongly inaccessible $\}$ is stationary.

Nonseparable Tsirelson-like spaces

Theorem 14 (B., Lopez-Abad, Todorcevic \& Argyros, Motakis) If $\left(\mathcal{F}_{n}\right)_{n}$ is a $C L$-sequence, then there is a Banach space X of density κ with an unconditional (long) basis and with no subsymmetric sequences.

Nonseparable Tsirelson-like spaces

Theorem 14 (B., Lopez-Abad, Todorcevic \& Argyros, Motakis) If $\left(\mathcal{F}_{n}\right)_{n}$ is a $C L$-sequence, then there is a Banach space X of density κ with an unconditional (long) basis and with no subsymmetric sequences.

Sketch.
Given $x \in c_{00}(\kappa)$, let

$$
\|x\|=\sup \left\{\|x\|_{\infty},\left\|\sum_{n=0}^{\infty} \frac{\|x\|_{\mathcal{F}_{n}}}{2^{n+1}}\right\|_{T}\right\}
$$

This is a norm such that the closure with respect to it is a Banach space of density κ with an unconditional basis and with no subsymmetric sequences.

A CL-sequence on ω

Example 15

Given hereditary and compact families \mathcal{F} and \mathcal{F}^{\prime} on ω, let

$$
\begin{gathered}
\mathcal{F} \oplus \mathcal{F}^{\prime}=\left\{s \cup t: s<t, s \in \mathcal{F}^{\prime}, t \in \mathcal{F}\right\} \\
\mathcal{F} \otimes \mathcal{F}^{\prime}=\left\{\bigcup_{k<n} s_{k}: n \in \omega, s_{k}<s_{k+1}, s_{k} \in \mathcal{F},\left\{\min s_{k}: k<n\right\} \in \mathcal{F}^{\prime}\right\}
\end{gathered}
$$

and notice that $\mathcal{G}=(\mathcal{F} \otimes \mathcal{S}) \oplus \mathcal{F}$ is a compact and hereditary family on ω and a multiplication of \mathcal{F} by \mathcal{S}.

A CL-sequence on ω

Example 15

Given hereditary and compact families \mathcal{F} and \mathcal{F}^{\prime} on ω, let

$$
\begin{gathered}
\mathcal{F} \oplus \mathcal{F}^{\prime}=\left\{s \cup t: s<t, s \in \mathcal{F}^{\prime}, t \in \mathcal{F}\right\} \\
\mathcal{F} \otimes \mathcal{F}^{\prime}=\left\{\bigcup_{k<n} s_{k}: n \in \omega, s_{k}<s_{k+1}, s_{k} \in \mathcal{F},\left\{\min s_{k}: k<n\right\} \in \mathcal{F}^{\prime}\right\}
\end{gathered}
$$

and notice that $\mathcal{G}=(\mathcal{F} \otimes \mathcal{S}) \oplus \mathcal{F}$ is a compact and hereditary family on ω and a multiplication of \mathcal{F} by \mathcal{S}.
Define inductively:

- $\mathcal{F}_{0}=\mathcal{S}$;
- $\mathcal{F}_{n+1}=\left(\mathcal{S}_{n} \otimes \mathcal{S}\right) \oplus \mathcal{S}_{n}$.
$\left(\mathcal{F}_{n}\right)_{n}$ is a CL-sequence of families on ω.

