Generalizing Schreier families to large index sets

Christina Brech Joint with J. Lopez-Abad and S. Todorcevic

Universidade de São Paulo

Winterschool 2017

Outline

Introduction

- Basic notation and definitions
- Motivation: indiscernibles in Banach spaces

First main result

- Multiplication of families
- Families on trees
- Stepping up

Second main result

- Cantor-Bendixson indices and homogeneity
- Topological multiplication and bases

Main References

- S. A. Argyros and S. Todorcevic, Ramsey methods in analysis, Advanced Courses in Mathematics. CRM Barcelona, Birkhäuser Verlag, Basel, 2005.
- C. Brech, J. Lopez-Abad, and S. Todorcevic, *Homogeneous families* on trees and subsymmetric basic sequences, preprint.
- J. Lopez-Abad and S. Todorcevic, Positional graphs and conditional structure of weakly null sequences, Adv. Math. 242 (2013), 163–186.
- S. Todorcevic, *Walks on ordinals and their characteristics*, Progress in Mathematics, vol. 263, Birkhäuser Verlag, Basel, 2007.

Useful tools

Useful tools

Fact 1

TFAE:

- beer, wine, water, coffee, bread;
- pivo, víno, voda, káva, chléb/chleba.

I will always denote an infinite index set, typically an uncountable cardinal or partial ordering.

I will always denote an infinite index set, typically an uncountable cardinal or partial ordering. By a family \mathcal{F} on *I* we mean an infinite family of finite subsets of *I* (generally such that $[I]^{\leq 1} \subseteq \mathcal{F}$).

I will always denote an infinite index set, typically an uncountable cardinal or partial ordering. By a family \mathcal{F} on I we mean an infinite family of finite subsets of I (generally such that $[I]^{\leq 1} \subseteq \mathcal{F}$). \mathcal{F} is said to be:

• hereditary if it is closed under subsets;

I will always denote an infinite index set, typically an uncountable cardinal or partial ordering. By a family \mathcal{F} on *I* we mean an infinite family of finite subsets of *I* (generally such that $[I]^{\leq 1} \subseteq \mathcal{F}$). \mathcal{F} is said to be:

- hereditary if it is closed under subsets;
- compact if it is a compact (equiv. closed) subset of 2^{I} , when we identify each element of \mathcal{F} with its characteristic function;

I will always denote an infinite index set, typically an uncountable cardinal or partial ordering. By a family \mathcal{F} on I we mean an infinite family of finite subsets of I (generally such that $[I]^{\leq 1} \subseteq \mathcal{F}$). \mathcal{F} is said to be:

- hereditary if it is closed under subsets;
- compact if it is a compact (equiv. closed) subset of 2^{\prime} , when we identify each element of \mathcal{F} with its characteristic function;
- \bullet pre-compact if every sequence in ${\cal F}$ has a subsequence which forms a $\Delta\mbox{-system};$

I will always denote an infinite index set, typically an uncountable cardinal or partial ordering. By a family \mathcal{F} on I we mean an infinite family of finite subsets of I (generally such that $[I]^{\leq 1} \subseteq \mathcal{F}$). \mathcal{F} is said to be:

- hereditary if it is closed under subsets;
- compact if it is a compact (equiv. closed) subset of 2^{\prime} , when we identify each element of \mathcal{F} with its characteristic function;
- \bullet pre-compact if every sequence in ${\cal F}$ has a subsequence which forms a $\Delta\mbox{-system};$
- large if it contains arbitrarily large (in cardinality) finite subsets within any infinite subset X of I.

For each $n \in \omega$, the family $[\kappa]^{\leq n}$ is hereditary and compact, but not large.

For each $n \in \omega$, the family $[\kappa]^{\leq n}$ is hereditary and compact, but not large.

Exercise 1 Let \mathcal{F} be a family on I. Prove that:

For each $n \in \omega$, the family $[\kappa]^{\leq n}$ is hereditary and compact, but not large.

Exercise 1

Let \mathcal{F} be a family on I. Prove that:

(i) \mathcal{F} is compact iff every sequence in \mathcal{F} has a subsequence which forms a Δ -system with root in \mathcal{F} ;

For each $n \in \omega$, the family $[\kappa]^{\leq n}$ is hereditary and compact, but not large.

Exercise 1

Let \mathcal{F} be a family on I. Prove that:

- (i) \mathcal{F} is compact iff every sequence in \mathcal{F} has a subsequence which forms a Δ -system with root in \mathcal{F} ;
- (ii) \mathcal{F} is pre-compact iff $\overline{\mathcal{F}}^{\subseteq} = \{s \subseteq I : \exists t \in \mathcal{F}, s \subseteq t\}$ is compact;

For each $n \in \omega$, the family $[\kappa]^{\leq n}$ is hereditary and compact, but not large.

Exercise 1

Let \mathcal{F} be a family on I. Prove that:

- (i) \mathcal{F} is compact iff every sequence in \mathcal{F} has a subsequence which forms a Δ -system with root in \mathcal{F} ;
- (ii) \mathcal{F} is pre-compact iff $\overline{\mathcal{F}}^{\subseteq} = \{ s \subseteq I : \exists t \in \mathcal{F}, s \subseteq t \}$ is compact;
- (iii) if \mathcal{F} is hereditary, then it is compact iff it is pre-compact;

For each $n \in \omega$, the family $[\kappa]^{\leq n}$ is hereditary and compact, but not large.

Exercise 1

Let \mathcal{F} be a family on I. Prove that:

- (i) \mathcal{F} is compact iff every sequence in \mathcal{F} has a subsequence which forms a Δ -system with root in \mathcal{F} ;
- (ii) \mathcal{F} is pre-compact iff $\overline{\mathcal{F}}^{\subseteq} = \{ s \subseteq I : \exists t \in \mathcal{F}, s \subseteq t \}$ is compact;

(iii) if \mathcal{F} is hereditary, then it is compact iff it is pre-compact;

(iv) if ${\mathcal F}$ is compact, then ${\mathcal F}$ is scattered.

For each $n \in \omega$, the family $[\kappa]^{\leq n}$ is hereditary and compact, but not large.

Exercise 1

Let \mathcal{F} be a family on I. Prove that:

(i) \mathcal{F} is compact iff every sequence in \mathcal{F} has a subsequence which forms a Δ -system with root in \mathcal{F} ;

(ii) \mathcal{F} is pre-compact iff $\overline{\mathcal{F}}^{\subseteq} = \{s \subseteq I : \exists t \in \mathcal{F}, s \subseteq t\}$ is compact;

(iii) if \mathcal{F} is hereditary, then it is compact iff it is pre-compact;

(iv) if \mathcal{F} is compact, then \mathcal{F} is scattered.

Example 3 (Schreier family)

The family $S = \{\emptyset\} \cup \{s \in [\omega]^{<\omega} : |s| \le \min s + 1\}$ is hereditary, compact and large.

In model theory, a set of indiscernibles for a given structure \mathcal{M} is a subset X with a total order < such that, for every positive integer n, every two increasing n-tuples $x_1 < x_2 < \cdots < x_n$ and $y_1 < y_2 < \cdots < y_n$ of elements of X have the same properties in \mathcal{M} .

In model theory, a set of indiscernibles for a given structure \mathcal{M} is a subset X with a total order < such that, for every positive integer n, every two increasing n-tuples $x_1 < x_2 < \cdots < x_n$ and $y_1 < y_2 < \cdots < y_n$ of elements of X have the same properties in \mathcal{M} .

Proposition 1

If \mathcal{F} is a compact large family on I, then the relational structure $\mathcal{M}_{\mathcal{F}} := (I, (\mathcal{F} \cap [I]^n)_n)$ has no infinite sets of indiscernibles.

In model theory, a set of indiscernibles for a given structure \mathcal{M} is a subset X with a total order < such that, for every positive integer n, every two increasing n-tuples $x_1 < x_2 < \cdots < x_n$ and $y_1 < y_2 < \cdots < y_n$ of elements of X have the same properties in \mathcal{M} .

Proposition 1

If \mathcal{F} is a compact large family on I, then the relational structure $\mathcal{M}_{\mathcal{F}} := (I, (\mathcal{F} \cap [I]^n)_n)$ has no infinite sets of indiscernibles.

Proof.

Suppose $X \subseteq I$ is infinite and (X, <) is a set of indiscernibles.

In model theory, a set of indiscernibles for a given structure \mathcal{M} is a subset X with a total order < such that, for every positive integer n, every two increasing n-tuples $x_1 < x_2 < \cdots < x_n$ and $y_1 < y_2 < \cdots < y_n$ of elements of X have the same properties in \mathcal{M} .

Proposition 1

If \mathcal{F} is a compact large family on I, then the relational structure $\mathcal{M}_{\mathcal{F}} := (I, (\mathcal{F} \cap [I]^n)_n)$ has no infinite sets of indiscernibles.

Proof.

Suppose $X \subseteq I$ is infinite and (X, <) is a set of indiscernibles. Given $n \ge 1$, since \mathcal{F} is large, there is $s \in [X]^n \cap \mathcal{F}$.

In model theory, a set of indiscernibles for a given structure \mathcal{M} is a subset X with a total order < such that, for every positive integer n, every two increasing n-tuples $x_1 < x_2 < \cdots < x_n$ and $y_1 < y_2 < \cdots < y_n$ of elements of X have the same properties in \mathcal{M} .

Proposition 1

If \mathcal{F} is a compact large family on I, then the relational structure $\mathcal{M}_{\mathcal{F}} := (I, (\mathcal{F} \cap [I]^n)_n)$ has no infinite sets of indiscernibles.

Proof.

Suppose $X \subseteq I$ is infinite and (X, <) is a set of indiscernibles. Given $n \ge 1$, since \mathcal{F} is large, there is $s \in [X]^n \cap \mathcal{F}$. Now, given $t \in [X]^n$, writing $s = \{x_1 < \cdots < x_n\}$ and $t = \{y_1 < \cdots < y_n\}$, we get that $t \in [X]^n \cap \mathcal{F}$.

In model theory, a set of indiscernibles for a given structure \mathcal{M} is a subset X with a total order < such that, for every positive integer n, every two increasing n-tuples $x_1 < x_2 < \cdots < x_n$ and $y_1 < y_2 < \cdots < y_n$ of elements of X have the same properties in \mathcal{M} .

Proposition 1

If \mathcal{F} is a compact large family on I, then the relational structure $\mathcal{M}_{\mathcal{F}} := (I, (\mathcal{F} \cap [I]^n)_n)$ has no infinite sets of indiscernibles.

Proof.

Suppose $X \subseteq I$ is infinite and (X, <) is a set of indiscernibles. Given $n \ge 1$, since \mathcal{F} is large, there is $s \in [X]^n \cap \mathcal{F}$. Now, given $t \in [X]^n$, writing $s = \{x_1 < \cdots < x_n\}$ and $t = \{y_1 < \cdots < y_n\}$, we get that $t \in [X]^n \cap \mathcal{F}$. Hence, $[X]^{<\omega} \subseteq \mathcal{F}$, contradicting the fact that \mathcal{F} is compact.

A sequence $(x_n)_n$ in a Banach space X is subsymmetric if there is $C \ge 1$ such that for all $(\lambda_i)_{i=1}^l$ and all increasing sequences $(k_i)_{i=1}^l$ and $(n_i)_{i=1}^l$ we have that

$$\|\sum_{i=1}^l \lambda_i x_{k_i}\| \leq C \|\sum_{i=1}^l \lambda_i x_{n_i}\|.$$

A sequence $(x_n)_n$ in a Banach space X is subsymmetric if there is $C \ge 1$ such that for all $(\lambda_i)_{i=1}^l$ and all increasing sequences $(k_i)_{i=1}^l$ and $(n_i)_{i=1}^l$ we have that

$$\left(\frac{1}{C}\|\sum_{i=1}^{l}\lambda_{i}x_{n_{i}}\|\leq\right)\|\sum_{i=1}^{l}\lambda_{i}x_{k_{i}}\|\leq C\|\sum_{i=1}^{l}\lambda_{i}x_{n_{i}}\|.$$

A sequence $(x_n)_n$ in a Banach space X is subsymmetric if there is $C \ge 1$ such that for all $(\lambda_i)_{i=1}^l$ and all increasing sequences $(k_i)_{i=1}^l$ and $(n_i)_{i=1}^l$ we have that

$$\left(\frac{1}{C}\|\sum_{i=1}^{l}\lambda_{i}x_{n_{i}}\|\leq\right)\|\sum_{i=1}^{l}\lambda_{i}x_{k_{i}}\|\leq C\|\sum_{i=1}^{l}\lambda_{i}x_{n_{i}}\|.$$

Example 4

The unit bases of c_0 and ℓ_p , $1 \le p < \infty$ are (sub)symmetric.

Example 5 (Schreier space)

Given: $x = (x_n)_n \in c_{00}(\omega)$, let $||x||_{\mathcal{S}} = \sup\{\sum_{n \in s} |x_n| : s \in \mathcal{S}\}$. $|| \cdot ||_{\mathcal{S}}$ is a norm and the completion of $(c_{00}(\omega), || \cdot ||_{\mathcal{S}})$ is a Banach space such that $(e_n)_n$ is an unconditional basis with no subsymmetric basic subsequences.

Example 5 (Schreier space)

Given: $x = (x_n)_n \in c_{00}(\omega)$, let $||x||_S = \sup\{\sum_{n \in s} |x_n| : s \in S\}$. $|| \cdot ||_S$ is a norm and the completion of $(c_{00}(\omega), || \cdot ||_S)$ is a Banach space such that $(e_n)_n$ is an unconditional basis with no subsymmetric basic subsequences.

• $[\omega]^{\leq 1} \subseteq S \Rightarrow \|\cdot\|_{\infty} \leq \|\cdot\|_{S} \Rightarrow \|\cdot\|_{S}$ is a norm;

Example 5 (Schreier space)

Given: $x = (x_n)_n \in c_{00}(\omega)$, let $||x||_S = \sup\{\sum_{n \in s} |x_n| : s \in S\}$. $|| \cdot ||_S$ is a norm and the completion of $(c_{00}(\omega), || \cdot ||_S)$ is a Banach space such that $(e_n)_n$ is an unconditional basis with no subsymmetric basic subsequences.

- $[\omega]^{\leq 1} \subseteq S \Rightarrow \|\cdot\|_{\infty} \leq \|\cdot\|_{S} \Rightarrow \|\cdot\|_{S}$ is a norm;
- hereditariness of $\mathcal{F} \Rightarrow$ projections on the first *m*-many coordinates are bounded $\Rightarrow (e_n)_n$ is a Schauder basis, clearly unconditional;

Example 5 (Schreier space)

Given: $x = (x_n)_n \in c_{00}(\omega)$, let $||x||_S = \sup\{\sum_{n \in s} |x_n| : s \in S\}$. $|| \cdot ||_S$ is a norm and the completion of $(c_{00}(\omega), || \cdot ||_S)$ is a Banach space such that $(e_n)_n$ is an unconditional basis with no subsymmetric basic subsequences.

- $[\omega]^{\leq 1} \subseteq S \Rightarrow \|\cdot\|_{\infty} \leq \|\cdot\|_{S} \Rightarrow \|\cdot\|_{S}$ is a norm;
- hereditariness of *F* ⇒ projections on the first *m*-many coordinates are bounded ⇒ (*e_n*)_n is a Schauder basis, clearly unconditional;
- compactness + Ptak's Lemma + largeness of *F* ⇒ (e_n)_n has no subsymmetric subsequences.

Example 5 (Schreier space)

Given: $x = (x_n)_n \in c_{00}(\omega)$, let $||x||_S = \sup\{\sum_{n \in s} |x_n| : s \in S\}$. $|| \cdot ||_S$ is a norm and the completion of $(c_{00}(\omega), || \cdot ||_S)$ is a Banach space such that $(e_n)_n$ is an unconditional basis with no subsymmetric basic subsequences.

- $[\omega]^{\leq 1} \subseteq S \Rightarrow \|\cdot\|_{\infty} \leq \|\cdot\|_{S} \Rightarrow \|\cdot\|_{S}$ is a norm;
- hereditariness of *F* ⇒ projections on the first *m*-many coordinates are bounded ⇒ (*e_n*)_n is a Schauder basis, clearly unconditional;
- compactness + Ptak's Lemma + largeness of *F* ⇒ (e_n)_n has no subsymmetric subsequences.

Lemma 6 (Pták, 1963)

If \mathcal{F} is a compact family on ω , then for every $\varepsilon > 0$, there is a finite $F \subseteq \omega$ and positive $(a_{\alpha})_{\alpha \in F}$ such that $\sum_{\alpha \in F} a_{\alpha} = 1$ and $\sum_{\alpha \in s} a_{\alpha} < \varepsilon$ if $s \in \mathcal{F} \cap \wp(F)$.

Lopez-Abad and Todorcevic result

Theorem 7 (Lopez-Abad, Todorcevic, 2013)

Let κ be an infinite cardinal. TFAE:

- (a) κ is not ω -Erdös, i.e., if $\kappa \not\rightarrow (\omega)_2^{<\omega}$;
- (b) there is a hereditary, compact and large family ${\cal F}$ on κ ;
- (c) there is a nontrivial normalized weakly-null basis $(x_{\alpha})_{\alpha < \kappa}$ in a Banach space with no subsymmetric basic subsequence.

(a) implies (b)

Fact 8 If $\kappa \not\rightarrow (\omega)_2^{<\omega}$ and $c : [\kappa]^{<\omega} \rightarrow 2$, then $\mathcal{F}_c = \{s \subseteq \omega : s \text{ is monochromatic}\}$

is a hereditary, compact and large family on κ .

(a) implies (b)

Fact 8

If $\kappa \not\rightarrow (\omega)_2^{<\omega}$ and $c : [\kappa]^{<\omega} \rightarrow 2$, then

 $\mathcal{F}_{c} = \{ s \subseteq \omega : s \text{ is monochromatic} \}$

is a hereditary, compact and large family on κ .

Proof.

It is clearly hereditary and it is easy to check that it is compact. Largeness is a consequence of the finite Ramsey theorem. The fact that $\kappa \not\rightarrow (\omega)_2^{<\omega}$ is needed only to guarantee that \mathcal{F}_c consists of finite subsets of κ .

(b) implies (c)

Fact 9

If \mathcal{F} is a hereditary, compact and large family on κ and $x = (x_{\alpha})_{\alpha} \in c_{00}(\kappa)$, let

$$\|x\|_{\mathcal{F}} = \sup\{\sum_{\alpha \in s} |x_{\alpha}| : s \in \mathcal{F}\}.$$

 $\|\cdot\|_{\mathcal{F}}$ is a norm and the completion of $(c_{00}(\kappa), \|\cdot\|_{\mathcal{F}})$ is a Banach space such that $(e_{\alpha})_{\alpha}$ is an unconditional basis with no subsymmetric basic subsequences.

(b) implies (c)

Fact 9

If \mathcal{F} is a hereditary, compact and large family on κ and $x = (x_{\alpha})_{\alpha} \in c_{00}(\kappa)$, let

$$|x||_{\mathcal{F}} = \sup\{\sum_{\alpha \in s} |x_{\alpha}| : s \in \mathcal{F}\}.$$

 $\|\cdot\|_{\mathcal{F}}$ is a norm and the completion of $(c_{00}(\kappa), \|\cdot\|_{\mathcal{F}})$ is a Banach space such that $(e_{\alpha})_{\alpha}$ is an unconditional basis with no subsymmetric basic subsequences.

Proof.

Analogous to the Schreier space.

(c) implies (a)

Exercise 2

 $\kappa \to (\omega)_2^{<\omega}$ iff $\kappa \to (\omega)_{2\omega}^{<\omega}$. Hint: Given $c : [\kappa]^{<\omega} \to 2^{\omega}$ and $\theta : \omega^2 \to \omega$ bijection such that $\theta(i,j) \ge i$, let $d : [\kappa]^{<\omega} \to 2$ be such that d(s) is the j-th coordinate of the c-color of the subset of s consisting of its first i-many elements, where $\theta(i,j) = |s|$ and show that a d-monochromatic set is also c-monochromatic.

(c) implies (a)

Exercise 2

 $\kappa \to (\omega)_2^{<\omega}$ iff $\kappa \to (\omega)_{2\omega}^{<\omega}$. Hint: Given $c : [\kappa]^{<\omega} \to 2^{\omega}$ and $\theta : \omega^2 \to \omega$ bijection such that $\theta(i,j) \ge i$, let $d : [\kappa]^{<\omega} \to 2$ be such that d(s) is the j-th coordinate of the c-color of the subset of s consisting of its first i-many elements, where $\theta(i,j) = |s|$ and show that a d-monochromatic set is also c-monochromatic.

Fact 10 (Ketonen, 1974)

Given $(x_{\alpha})_{\alpha < \kappa}$, for each $s = \{\alpha_1 < \cdots < \alpha_n\} \in [\kappa]^{<\omega}$ with |s| = n, define f_s on \mathbb{R}^n by $f_s(a_1, \ldots, a_n) = ||a_1x_{\alpha_1} + \cdots + a_nx_{\alpha_n}||$ and define $c : [\kappa]^{<\omega} \to \bigcup_{n \in \omega} \{n\} \times \mathbb{R}^{n+1}$ by $c(s) = (|s|, f_s)$. If A is an infinite monochromatic subset of κ , then $(x_{\alpha})_{\alpha \in A}$ is symmetric.

Tsirelson space

Let us now turn to the "full" (in contrast with the "sequential") version of the problem, i.e., whether there is a Banach space with no subsymmetric basic sequences.

Tsirelson space

Let us now turn to the "full" (in contrast with the "sequential") version of the problem, i.e., whether there is a Banach space with no subsymmetric basic sequences. The first such example was given by Tsirelson.

Example 11 (Tsirelson space)

Given $x = (x_n)_n \in c_{00}(\omega)$, let $||x||_T$ on $c_{00}(\omega)$ be such that

$$\|x\|_{T} = \sup\{\|x\|_{\infty}, \frac{1}{2}\sum_{i=1}^{n} \|\langle x_{i}, \chi_{s_{i}}\rangle\|_{T} : s_{i} < s_{i+1}, \ \{\min s_{i}\}_{1 \le i \le n} \in \mathcal{S}\}.$$

 $\|\cdot\|_{\mathcal{T}}$ is a norm and the completion of $(c_{00}(\omega), \|\cdot\|_{\mathcal{T}})$ is a (separable) reflexive Banach space with no subsymmetric basic sequences.

However, the natural nonseparable version of the Tsirelson space, replacing the Schreier family by a hereditary compact and large family on an uncountable cardinal κ , yields a space with copies of ℓ_1 , hence with subsymmetric basic sequences (Lopez-Abad, Todorcevic, 2013).

However, the natural nonseparable version of the Tsirelson space, replacing the Schreier family by a hereditary compact and large family on an uncountable cardinal κ , yields a space with copies of ℓ_1 , hence with subsymmetric basic sequences (Lopez-Abad, Todorcevic, 2013). One of the reasons for that is that the Schreier family is spreading, that is, if $\{k_1, \ldots, k_n\} \in S$ and $k_i \leq l_i$, then $\{l_1, \ldots, l_n\} \in S$, while we have the following in the uncountable setting:

However, the natural nonseparable version of the Tsirelson space, replacing the Schreier family by a hereditary compact and large family on an uncountable cardinal κ , yields a space with copies of ℓ_1 , hence with subsymmetric basic sequences (Lopez-Abad, Todorcevic, 2013). One of the reasons for that is that the Schreier family is spreading, that is, if $\{k_1, \ldots, k_n\} \in S$ and $k_i \leq l_i$, then $\{l_1, \ldots, l_n\} \in S$, while we have the following in the uncountable setting:

Fact 12

If $\mathcal F$ is a large and spreading family on an uncountable index set, then $\mathcal F$ is not compact.

However, the natural nonseparable version of the Tsirelson space, replacing the Schreier family by a hereditary compact and large family on an uncountable cardinal κ , yields a space with copies of ℓ_1 , hence with subsymmetric basic sequences (Lopez-Abad, Todorcevic, 2013). One of the reasons for that is that the Schreier family is spreading, that is, if $\{k_1, \ldots, k_n\} \in S$ and $k_i \leq l_i$, then $\{l_1, \ldots, l_n\} \in S$, while we have the following in the uncountable setting:

Fact 12

If $\mathcal F$ is a large and spreading family on an uncountable index set, then $\mathcal F$ is not compact.

To overcome this obstacle, we switch from a single large family to sequences of families obtained by making some kind of products by families on ω , such as the Schreier family.

Given a family \mathcal{F} on a cardinal κ and a family \mathcal{H} on ω , we say that a family \mathcal{G} on κ is a multiplication of \mathcal{F} by \mathcal{H} if every infinite sequence $(s_n)_n$ in \mathcal{F} has an infinite subsequence $(t_n)_n$ such that, for every $x \in \mathcal{H}$, $\bigcup_{n \in x} t_n \in \mathcal{G}$.

Given a family \mathcal{F} on a cardinal κ and a family \mathcal{H} on ω , we say that a family \mathcal{G} on κ is a multiplication of \mathcal{F} by \mathcal{H} if every infinite sequence $(s_n)_n$ in \mathcal{F} has an infinite subsequence $(t_n)_n$ such that, for every $x \in \mathcal{H}$, $\bigcup_{n \in x} t_n \in \mathcal{G}$.

We say that a sequence of families $(\mathcal{F}_n)_n$ on κ is a CL-sequence (consecutively large sequence) of families on κ if each family is hereditary and compact and \mathcal{F}_{n+1} is a multiplication of \mathcal{F}_n by \mathcal{S} .

Given a family \mathcal{F} on a cardinal κ and a family \mathcal{H} on ω , we say that a family \mathcal{G} on κ is a multiplication of \mathcal{F} by \mathcal{H} if every infinite sequence $(s_n)_n$ in \mathcal{F} has an infinite subsequence $(t_n)_n$ such that, for every $x \in \mathcal{H}$, $\bigcup_{n \in x} t_n \in \mathcal{G}$.

We say that a sequence of families $(\mathcal{F}_n)_n$ on κ is a CL-sequence (consecutively large sequence) of families on κ if each family is hereditary and compact and \mathcal{F}_{n+1} is a multiplication of \mathcal{F}_n by \mathcal{S} .

Theorem 13 (B., Lopez-Abad, Todorcevic)

For every infinite cardinal κ smaller than the first Mahlo cardinal, there is a CL-sequence of families on κ .

Given a family \mathcal{F} on a cardinal κ and a family \mathcal{H} on ω , we say that a family \mathcal{G} on κ is a multiplication of \mathcal{F} by \mathcal{H} if every infinite sequence $(s_n)_n$ in \mathcal{F} has an infinite subsequence $(t_n)_n$ such that, for every $x \in \mathcal{H}$, $\bigcup_{n \in x} t_n \in \mathcal{G}$.

We say that a sequence of families $(\mathcal{F}_n)_n$ on κ is a CL-sequence (consecutively large sequence) of families on κ if each family is hereditary and compact and \mathcal{F}_{n+1} is a multiplication of \mathcal{F}_n by \mathcal{S} .

Theorem 13 (B., Lopez-Abad, Todorcevic)

For every infinite cardinal κ smaller than the first Mahlo cardinal, there is a CL-sequence of families on κ .

Recall that a cardinal κ is Mahlo if it is strongly inaccessible and $\{\lambda < \kappa : \lambda \text{ is strongly inaccessible}\}$ is stationary.

Theorem 14 (B., Lopez-Abad, Todorcevic & Argyros, Motakis) If $(\mathcal{F}_n)_n$ is a CL-sequence, then there is a Banach space X of density κ with an unconditional (long) basis and with no subsymmetric sequences.

Theorem 14 (B., Lopez-Abad, Todorcevic & Argyros, Motakis) If $(\mathcal{F}_n)_n$ is a CL-sequence, then there is a Banach space X of density κ with an unconditional (long) basis and with no subsymmetric sequences.

Sketch.

Given $x \in c_{00}(\kappa)$, let

$$||x|| = \sup\{||x||_{\infty}, ||\sum_{n=0}^{\infty} \frac{||x||_{\mathcal{F}_n}}{2^{n+1}}||_{\mathcal{T}}\}.$$

This is a norm such that the closure with respect to it is a Banach space of density κ with an unconditional basis and with no subsymmetric sequences.

A CL-sequence on ω

Example 15

 \mathcal{F}

Given hereditary and compact families ${\cal F}$ and ${\cal F}'$ on $\omega,$ let

$$\mathcal{F} \oplus \mathcal{F}' = \{ s \cup t : s < t, \ s \in \mathcal{F}', \ t \in \mathcal{F} \},$$
$$\otimes \mathcal{F}' = \{ \bigcup_{k < n} s_k : n \in \omega, \ s_k < s_{k+1}, \ s_k \in \mathcal{F}, \ \{\min s_k : k < n\} \in \mathcal{F}' \}$$

and notice that $\mathcal{G} = (\mathcal{F} \otimes \mathcal{S}) \oplus \mathcal{F}$ is a compact and hereditary family on ω and a multiplication of \mathcal{F} by \mathcal{S} .

A CL-sequence on ω

Example 15

Given hereditary and compact families ${\cal F}$ and ${\cal F}'$ on $\omega,$ let

$$\mathcal{F} \oplus \mathcal{F}' = \{ s \cup t : s < t, \ s \in \mathcal{F}', \ t \in \mathcal{F} \},$$
$$\mathfrak{F}' = \{ \left| \begin{array}{c} s_k : n \in \omega, \ s_k < s_{k+1}, \ s_k \in \mathcal{F}, \ \{\min s_k : k < n\} \in \mathcal{F}' \} \right\}$$

$$\mathcal{F} \otimes \mathcal{F}' = \{\bigcup_{k < n} s_k : n \in \omega, \ s_k < s_{k+1}, \ s_k \in \mathcal{F}, \ \{\min s_k : k < n\} \in \mathcal{F}'\},\$$

and notice that $\mathcal{G} = (\mathcal{F} \otimes \mathcal{S}) \oplus \mathcal{F}$ is a compact and hereditary family on ω and a multiplication of \mathcal{F} by \mathcal{S} .

Define inductively:

• $\mathcal{F}_0 = \mathcal{S};$

•
$$\mathcal{F}_{n+1} = (\mathcal{S}_n \otimes \mathcal{S}) \oplus \mathcal{S}_n.$$

 $(\mathcal{F}_n)_n$ is a CL-sequence of families on ω .